
 
 

Supplementary material 1. Estimation of relative cellular abundances in pooled tumor samples 
using multi-region information. 

A. Cell-abundance estimates in tumor samples: definitions and key relationships 

Tumors represent a true ecosystem of cell populations where neoplastic and non-
neoplastic cells coexist in the same environment. Furthermore, neoplasia itself is defined as a 
process of abnormal cellular reproduction which results in excessive tissue growth. This 
continuous multiplication of asexual organisms (i.e. tumor cells) in a resource-constrained 
environment such as the human body, inevitably creates a situation where cells in the tumor niche 
compete for nutrients through adaptation; providing the ideal substrate for selection to act. This 
ongoing evolutionary process has been extensively documented in cancer, and can ultimately 
lead to the existence of tumor subclones that are fundamentally different from each other. The 
co-existence of multiple, genetically distinct clones is known as intratumoral heterogeneity (ITH), 
and its existence can be traced from the genome to the protein products of most cancer types.  

The degree of ITH observed in the cancer genomes can be evidenced, at least in part, by 
the presence of distinct somatic mutations in divergent tumor subclones. Thus, with regards to a 
somatic mutation of interest, the totality of cells (C) in a given tumor tissue sample i can be 
grouped into: normal/stromal cells (randomly intermixed with the tumor), mutant tumor cells 
(bearing the variant of interest) and wild-type (WT) tumor cells (without the variant).  

	𝐶# = 𝑁𝑜𝑟𝑚𝑎𝑙	𝑐𝑒𝑙𝑙𝑠 + 𝑚𝑢𝑡𝑎𝑛𝑡	𝑡𝑢𝑚𝑜𝑟	𝑐𝑒𝑙𝑙𝑠 +𝑊𝑇	𝑡𝑢𝑚𝑜𝑟	𝑐𝑒𝑙𝑙𝑠 

In order to assess the degree of ITH in the tumor, we would need to quantify the frequency 
of somatic mutations only in the tumor compartment. Therefore, consideration of the tumor/normal 
relative abundance is needed. Next-generation sequencing (NGS) allows assessment of both 
parameters with a relatively high degree of accuracy. First, the relative amount of tumor tissue in 
the sample (i.e. purity,	𝜌) can be obtained using copy-number algorithms, which rely on single 
nucleotide polymorphism (SNP) count data and previously-known karyotype frequencies to 
estimate this parameter.  

𝜌# =
𝑡𝑢𝑚𝑜𝑟	𝑐𝑒𝑙𝑙𝑠#

𝐶#
 

Secondly, variant allelic frequencies (VAF) obtained from mutation-calling algorithms 
provide us an estimate of the proportion of mutant DNA in the sample. By combining these 
parameters with the locus-specific ploidy estimates (also from CN algorithms), investigators have 
been able to estimate the fraction of tumor cells bearing a particular mutation (m). This parameter 
is known as cancer-cell fraction (CCF) and represents a relative measure of cell abundance (i.e. 
relative to the subset of tumor cells): 

𝐶𝐶𝐹# =
𝑚𝑢𝑡𝑎𝑛𝑡	𝑡𝑢𝑚𝑜𝑟	𝑐𝑒𝑙𝑙𝑠#

𝑡𝑢𝑚𝑜𝑟	𝑐𝑒𝑙𝑙𝑠#
 



 
 

By defining these measures in probability terms, we can say that given a random cell drawn from 
the sample, 𝜌 represents the probability of that cell being neoplastic. However, due to the relative 
nature of CCF, it must be understood as the conditional probability of mutation presence in a 
tumor cell from the pool: 

𝜌 = 	𝑃(𝑡𝑢𝑚𝑜𝑟	𝑐𝑒𝑙𝑙) 

𝐶𝐶𝐹 = 	𝑃(𝑚𝑢𝑡𝑎𝑛𝑡	𝑡𝑢𝑚𝑜𝑟	𝑐𝑒𝑙𝑙	|	𝑡𝑢𝑚𝑜𝑟	𝑐𝑒𝑙𝑙) 

 

Finally, if we wanted to estimate the probability of randomly drawing a ‘mutant tumor cell’ from 
this sample we would need to consider the above two parameters: 

 

𝑃(𝑚𝑢𝑡𝑎𝑛𝑡	𝑡𝑢𝑚𝑜𝑟	𝑐𝑒𝑙𝑙) = 	𝑃(𝑡𝑢𝑚𝑜𝑟	𝑐𝑒𝑙𝑙 ∩ 𝑚𝑢𝑡𝑎𝑛𝑡	𝑡𝑢𝑚𝑜𝑟	𝑐𝑒𝑙𝑙) 

𝑃(𝑚𝑢𝑡𝑎𝑛𝑡	𝑡𝑢𝑚𝑜𝑟	𝑐𝑒𝑙𝑙) = 𝑃(𝑡𝑢𝑚𝑜𝑟	𝑐𝑒𝑙𝑙) 	× 	𝑃(𝑚𝑢𝑡𝑎𝑛𝑡	𝑡𝑢𝑚𝑜𝑟	𝑐𝑒𝑙𝑙	|	𝑡𝑢𝑚𝑜𝑟	𝑐𝑒𝑙𝑙) 

 

By replacing these probabilities for the previously-defined parameters, we can conclude that the 
mutant cell fraction (MCF) in a sample i is a function of its purity and the mutation CCF: 

 

𝑀𝐶𝐹# = 𝜌# 	×	𝐶𝐶𝐹# 

 

These relationships can also be confirmed by assessing the cellular abundances that these 
parameters represent: 

𝑀𝐶𝐹# =
𝑡𝑢𝑚𝑜𝑟	𝑐𝑒𝑙𝑙𝑠#

𝐶#
×
𝑚𝑢𝑡𝑎𝑛𝑡	𝑡𝑢𝑚𝑜𝑟	𝑐𝑒𝑙𝑙𝑠#

𝑡𝑢𝑚𝑜𝑟	𝑐𝑒𝑙𝑙𝑠#
=
𝑚𝑢𝑡𝑎𝑛𝑡	𝑡𝑢𝑚𝑜𝑟	𝑐𝑒𝑙𝑙𝑠#

𝐶#
 

 

Therefore, if we had knowledge about the total number of cells in a sample we could easily find 
the number of tumor and mutant cells as follows:  

𝑡𝑢𝑚𝑜𝑟	𝑐𝑒𝑙𝑙𝑠# = 𝐶# 	×	𝜌# 

𝑚𝑢𝑡𝑎𝑛𝑡	𝑡𝑢𝑚𝑜𝑟	𝑐𝑒𝑙𝑙𝑠# = 𝐶# 	×	𝜌# ×	𝐶𝐶𝐹# 

  



 
 

B. Cell-abundance inference in multiregional tumor pools using single-region data. 

Due to the significant degree of ITH in many cancer types, investigators must rely on the 
assessment of spatially-distinct regions to capture the full spectrum of aberrations in a tumor. 
However, multi-regional profiling comes with a significant increase in cost, limiting its use outside 
of very specific settings. Nevertheless, we could extend the previously-described concepts to infer 
the cellular composition of more complex cell mixtures (such as a those represented by 
multiregional DNA tumor pools), providing a cost-effective alternative to ascertain the relative 
frequency of somatic mutations in spatially-representative tumor mixes. In this scenario, mutation 
CCF estimates constitute a particularly useful clonality surrogate. Their calculation using NGS 
data takes into account purity, ploidy and the somatic variants’ allelic frequencies, thus providing 
a normalized estimate which is expressed relative to the totality of cancer cells contributing to the 
pool.  

The cellular composition of a pool of cancer cells can be expressed as: 

𝐶=>>? = 	𝐶@ + 𝐶A + 𝐶B …+ 𝐶# 	= 	D𝐶#	
E

#F@

 

Similarly, the number of tumor cells and mutant tumor cells in the pool can be expressed as: 

𝑡𝑢𝑚𝑜𝑟	𝑐𝑒𝑙𝑙𝑠=>>? = 	D𝐶# 	× 𝜌#

E

#F@

 

𝑚𝑢𝑡𝑎𝑛𝑡	𝑡𝑢𝑚𝑜𝑟	𝑐𝑒𝑙𝑙𝑠=>>? = 	D𝐶# 	× 𝜌# ×	𝐶𝐶𝐹#

E

#F@

 

 

Given a tumor with distinct somatic mutations in spatially-separated regions, we can obtain 
n tissue samples, each composed of a certain number of cells. Assuming that each sample 
included in the pool contributed the same number of cells (𝐶# = 𝐶) a, the total amount of cells in 
the pool and in each sample will be: 

 

𝐶=>>? = 	𝐶# 	× 	𝑛 

 

𝐶# = 	
𝐶=>>?
𝑛	

= 	
1
𝑛

 

 

a equal cellular contents from distinct regions are equivalent to mixing in equal proportions the total DNA extracted from 
different tumor regions 



 
 

We could also express it as the probability that a random cell drawn from the pool originated from 
a given region, which would be inversely related to the total number in the mix: 

𝑃(𝑐𝑒𝑙𝑙	𝑓𝑟𝑜𝑚	𝑟𝑒𝑔𝑖𝑜𝑛	𝑖) = 		
1
𝑛

 

Therefore, the probability of drawing a tumor cell from region i  in this pool of n regions, will be a 
function of the mixture itself as well as the amount of tumor cells in the region (i.e. its purity). In 
this context, it represents the conditional probability of drawing a tumor cell from the subset 
appertaining to that region: b 

 

𝑃(𝑡𝑢𝑚𝑜𝑟	𝑐𝑒𝑙𝑙	)# = 			𝑃(𝑐𝑒𝑙𝑙	𝑓𝑟𝑜𝑚	𝑟𝑒𝑔𝑖𝑜𝑛	𝑖	 ∩ 	𝑡𝑢𝑚𝑜𝑟	𝑐𝑒𝑙𝑙		) 

𝑃(𝑡𝑢𝑚𝑜𝑟	𝑐𝑒𝑙𝑙)# = 			𝑃(𝑐𝑒𝑙𝑙	𝑓𝑟𝑜𝑚	𝑟𝑒𝑔𝑖𝑜𝑛	𝑖) 	× 𝑃(𝑡𝑢𝑚𝑜𝑟	𝑐𝑒𝑙𝑙	|	𝑐𝑒𝑙𝑙	𝑓𝑟𝑜𝑚	𝑟𝑒𝑔𝑖𝑜𝑛	𝑖) 

𝑃(𝑡𝑢𝑚𝑜𝑟	𝑐𝑒𝑙𝑙)# = 		
1
𝑛
×	𝜌# = 	

𝜌#
𝑛

 

 

Since cells in the pool can only originate from one tumor region (intersection probability = 0), in 
order to estimate the probability of finding any tumor cell in the pool we would need to consider 
the union of the probabilities in each region and conclude that the purity of the pool will be a near-
average of the individual purities: 

 

𝑃(𝑡𝑢𝑚𝑜𝑟	𝑐𝑒𝑙𝑙)=>>? = 𝑃(𝑡𝑢𝑚𝑜𝑟	𝑐𝑒𝑙𝑙)@ +	𝑃(𝑡𝑢𝑚𝑜𝑟	𝑐𝑒𝑙𝑙)A …+	𝑃(𝑡𝑢𝑚𝑜𝑟	𝑐𝑒𝑙𝑙)# 

 

𝑃(𝑡𝑢𝑚𝑜𝑟	𝑐𝑒𝑙𝑙)=>>? =D𝑃(𝑡𝑢𝑚𝑜𝑟	𝑐𝑒𝑙𝑙)# =
E

#F@

𝜌=>>? 

 

𝜌=>>? =D
𝜌#
𝑛

E

#F@

 

 

  

b these derivations also apply to sample material mixed in different proportions. The relative contribution of each sample must 
be known in advance (i.e. different volumes and/or DNA concentrations). 



 
 

We could follow the same reasoning to estimate the probability of finding a ‘mutant tumor cell’ in 
the pool, regardless of its tumor/normal status (𝑖. 𝑒.𝑀𝐶𝐹=>>?): 

 

𝑃(𝑚𝑢𝑡𝑎𝑛𝑡	𝑡𝑢𝑚𝑜𝑟	𝑐𝑒𝑙𝑙)=>>? =D𝑃(𝑚𝑢𝑡𝑎𝑛𝑡	𝑡𝑢𝑚𝑜𝑟	𝑐𝑒𝑙𝑙)# =
E

#F@

𝑀𝐶𝐹=>>? 

𝑃(𝑚𝑢𝑡𝑎𝑛𝑡	𝑡𝑢𝑚𝑜𝑟	𝑐𝑒𝑙𝑙)=>>? =D𝑃(𝑐𝑒𝑙𝑙	𝑓𝑟𝑜𝑚	𝑟𝑒𝑔𝑖𝑜𝑛	𝑖	 ∩ 𝑚𝑢𝑡𝑎𝑛𝑡	𝑡𝑢𝑚𝑜𝑟	𝑐𝑒𝑙𝑙)
E

#F@

 

𝑀𝐶𝐹=>>? =D𝑃(𝑐𝑒𝑙𝑙	𝑓𝑟𝑜𝑚	𝑟𝑒𝑔𝑖𝑜𝑛	𝑖) 	× 𝑃(𝑚𝑢𝑡𝑎𝑛𝑡	𝑡𝑢𝑚𝑜𝑟	𝑐𝑒𝑙𝑙	|	𝑐𝑒𝑙𝑙	𝑓𝑟𝑜𝑚	𝑟𝑒𝑔𝑖𝑜𝑛	𝑖)
E

#F@

 

𝑀𝐶𝐹=>>? =D
𝑀𝐶𝐹#
𝑛

E

#F@

	= 	D
𝐶𝐶𝐹# 	× 𝜌#

𝑛

E

#F@

	 

 

Finally, since the CCF of a given mutation represents the conditional probability of a cell being 
both neoplastic and mutant, we can conclude: 

	𝑃(𝑚𝑢𝑡𝑎𝑛𝑡	𝑡𝑢𝑚𝑜𝑟	𝑐𝑒𝑙𝑙	|	𝑡𝑢𝑚𝑜𝑟	𝑐𝑒𝑙𝑙) =
𝑃(𝑚𝑢𝑡𝑎𝑛𝑡	𝑡𝑢𝑚𝑜𝑟	𝑐𝑒𝑙𝑙)

𝑃(𝑡𝑢𝑚𝑜𝑟	𝑐𝑒𝑙𝑙)
	 

 

𝐶𝐶𝐹=>>? = 		
𝑀𝐶𝐹=>>?
𝜌=>>?

 

 

𝐶𝐶𝐹=>>? = 	
∑ 𝐶𝐶𝐹# 	× 𝜌#

𝑛
E
#F@ 	

∑ 𝜌#
𝑛

E
#F@

 

 

𝐶𝐶𝐹=>>? = 	
∑ 𝐶𝐶𝐹# 	× 𝜌#E
#F@ 	
∑ 𝜌#E
#F@

 

  



 
 

C. Working example 

To illustrate these concepts we’ve provided an example below. The pie charts represent 
two tumor regions that  represent hypothetical tissue samples. Both are represented by a group 
of tumor (red) and normal (blue) cells. A given subclonal mutation of interest may be differentially 
represented in the two samples (dark red).  

In one of the regions (A) the mutation is seen in 90% of the tumor cells (CCF=0.9), while 
on the second one (B), only a third of the tumor cells are mutant (CCF=0.33). It is clear that 
depending on the sample examined we would have reached radically different conclusions 
regarding the clonality of the mutation. Region 1 suggests it is early and present clonally 
throughout the tumor, while region 2 shows the variant present at a relatively low frequency (in 
about a third of the cancer cells). 

  

To illustrate our pooling approach, we are going to simulate a mixture of the cells 
composing both samples. To simplify calculations while assuming a mixture in equal proportions, 
we assigned an equal amount of total cells to each sample (n=100 each); the number of cells in 
each category is also shown.  

We can now use our previously-described formulations to infer the cellular composition of 
this hypothetical mixture containing all the cells sampled (n=200). Given that purity and MCF are 
parameters whose definitions are relative to the totality of cells, when combining both cell 
repertoires, these values are effectively averaged: 

𝜌=>>? =
∑ 𝜌#E
#F@
𝑛

= 	
0.2 + 0.75

2
= 𝟎. 𝟒𝟕𝟓 

 

𝑀𝐶𝐹	=>>? = 	
∑ 𝑀𝐶𝐹#E
#F@
𝑛

= 		
0.18 + 0.25

2
= 𝟎. 𝟐𝟏𝟓 

0.18 0.02

0.8

Purity=0.2
CCF=0.9  FMC=0.18

A   REGION 1

0.25

0.5

0.25

Purity=0.75
CCF=0.33  FMC=0.25

B   REGION 2

0.22

0.26
0.52

Purity=0.475
CCF=0.45  FMC=0.22

C   POOLED (mixed in equal parts)

Tum cells = 20 (mutant = 18) 
Normal cells = 80

Tum cells = 75 (mutant = 25)
Normal cells = 25

Tum cells = 20+75 (mutant = 18+25)
Normal cells = 80+25

Normal
WT−tumor
Mutant−tumor



 
 

However, the same is not true for CCF, which is a measure expressed relative to the totality of 
tumor cells. Neoplastic cells represent a subset of the sample that we cannot easily separated 
from the rest of the tissue. For these reasons, we cannot simple average these values (𝐶𝐶𝐹XXXXXX = 
1.07, or 107% in this case) and need to account for the purity in each region to be able to estimate 
it: 

𝐶𝐶𝐹=>>? =
∑ 𝐶𝐶𝐹# ×	𝜌#E
#F@
∑ 𝜌#E
#F@

 

𝐶𝐶𝐹=>>? =
(0.9 × 0.2) + (0.33 × 0.75)

0.2 + 0.75
= 𝟎. 𝟒𝟓 

 

Panel C shows our final multiregional pool, which is composed of the sum of cells from all regions 
(A+B = 200, at the bottom). The final cell quantities are listed on the bottom. We can finally confirm 
that our calculations were correct by going back to our previous definitions: 

 

𝜌=>>? =
𝑇𝑢𝑚𝑜𝑟	𝑐𝑒𝑙𝑙𝑠
𝑎𝑙𝑙	𝑐𝑒𝑙𝑙𝑠

=
20 + 75
200

= 𝟎. 𝟒𝟕𝟓 

𝑀𝐶𝐹	=>>? = 	
𝑚𝑢𝑡𝑎𝑛𝑡	𝑐𝑒𝑙𝑙𝑠
𝑎𝑙𝑙	𝑐𝑒𝑙𝑙𝑠

=
18 + 25
200

= 𝟎. 𝟐𝟏𝟓 

𝐶𝐶𝐹=>>? =
𝑚𝑢𝑡𝑎𝑛𝑡	𝑐𝑒𝑙𝑙𝑠
𝑇𝑢𝑚𝑜𝑟	𝑐𝑒𝑙𝑙𝑠

=
18 + 25
20 + 75

= 𝟎. 𝟒𝟓 


