
18       Kidney Cancer Journal  | 19 (2) | June 2021 www.kidney-cancer-journal.com  

Resource-Efficient Pooled Sequencing Expands 
Translational Impact in Solid Tumors 
Renzo G. DiNatalea,b,c, Roy Manoc, Vladimir Makarovb, Nicole Ruska, Esther Drilld, Andrew Winere, Alexander Sankinf, 
Angela Yooc,e, Benjamin A. Freemanc, James J. Hsiehg, Ying-Bei Chenh, Jonathan A. Colemanc, Michael Bergeri, Irina 
Ostrovnayad, Timothy A. Chanb, Paul Russoc, Ed Reznik * a,i, A. Ari Hakimi * b,c

a Computational Oncology Service, Epidemiology & Biostatistics Department, Memorial Sloan Kettering Cancer Center, New York, USA.
b Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, USA.
c Urology Service, Department of  Surgery, Memorial Sloan Kettering Cancer Center, New York, USA.
d Biostatistics, Epidemiology & Biostatistics Department, Memorial Sloan Kettering Cancer Center, New York, USA. 
e Department of  Urology, SUNY Downstate Health Sciences University, Brooklyn, NY. 
f  Department of  Urology, Montefiore Medical Center and Albert Einstein College of  Medicine, Bronx, NY. 
g Department of  Medicine, University of  Washington, Washington D.C., USA. 
h Department of  Pathology, Memorial Sloan Kettering Cancer Center, New York, USA. 
i Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, USA.
* These authors contributed equally.

Clear cell renal cell carcinoma (ccRCC), 
the most common and aggressive form 
of kidney cancer, is characterized by 
extensive intratumoral heterogeneity 
(ITH) whereby driver mutations 
frequently arise only in a subset of 
tumor cells1–3. As a result of ITH, 
clinically informative but subclonal 
mutations are commonly missed by the 
standard practice (at our institution4 
and others5) of sequencing single tumor 
regions.  In a landmark multiregional 
sequencing study of 101 ccRCC tumors, 

the TRACERx consortium reported 
that fifty-six percent of all detected 
mutations were subclonal6,  and 
~20% of subclonal mutations had 
demonstrable clinical value either for 
prognostication in clinical risk models 
(TP53, BAP1, and PBRM1)7, or as criteria 
for administration of targeted therapy 
(MTOR, TSC1, and PTEN)8 (Figure 1A). 
Single region sequencing places a hard 
constraint on the sensitivity to detect 
and study mutations for two reasons: 
somatic mutation dropout (i.e. absence 

of a mutation in the particular tumor 
region sampled) and erroneous clonality 
assertions (i.e. attributing mutations 
as clonal when in fact they are only 
subclonal or vice versa). Multiregional 
sequencing strategies address ITH 
by sequencing the genomic material 
of several spatially separated regions 
of the same tumor9. However, due to 
the added sequencing expenses, this 
approach becomes prohibitively costly 
as the number of regions increases, 
limiting its use in practice.

We reasoned that a more cost-
effective approach to quantitatively 
managing ITH would be to pool samples 
from many regions together into a 
single “pseudo-bulk” before library 
construction (Figure 1B). Doing so 
would potentially ameliorate mutation 
dropout by increasing the likelihood of 
capturing a subclonal mutation while 
reducing the misattribution of clonal 
status to mutations present only in 
single regions of the tumor. The benefits 
of a pooled approach would come at 
several costs: first, from diluting the 
sequencing bandwidth devoted to 
individual region, and second, from loss 
of spatial information that would be 
obtained from bona fide multiregional 
sequencing. However, complete loss of 
spatial information could potentially be 
avoided (with an increase in cost and 
overhead) by barcoding DNA libraries 
before sequencing, an approach that has 
previously been demonstrated by several 
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whereby DNA aliquots from multiple tumor regions are mixed prior to 
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2c, d). Notably, all the mutations 
missed/misclassified were present in 
the tumor with the highest regional 
variability in purity (RCC004, with a 
variance 5-fold higher than the average, 
σ2= 0.05 vs 0.01), and none of the 
pooled samples had purity estimates 
below our quality threshold (compared 
to 14%, or 5/36, of the regions profiled 
separately). These findings demonstrate 
an additional potential advantage of 
pooled sequencing, i.e. the possibility 
to reduce sample failure rates during 
clinical sequencing. 

To validate our findings and further 
assess the utility of this sequencing 
strategy, we analyzed multiregional 
sequencing data from the TRACERx 
consortium. The validation cohorts 
consisted of 101 individuals with a 
ccRCC diagnosis (median, 8 tumor 
regions range, 2-75) profiled with a 
sequencing panel targeting 110 cancer 
genes at a median depth of 612x (range, 
105–1,520x) (TRACERx RCC cohort,6), 
and 100 patients with non-small cell 
lung cancer (TRACERx NSCLC cohort), 
profiled with exome sequencing at a 
median depth of 431x (range 83-986x) 
for tumor regions and 415x (range 
107-765x) for the matched germline 
(median, 3 tumor regions, range 
2-8)12 (Supplementary table 3).  From 
our data, we confirmed that tumor 
purity estimates in DNA pools were 
predictable in silico to high accuracy 
using tumor purity from single regions 
(Supplementary figure 2e) Next, we 
simulated pooled sequencing in the 
TRACERx data (at equivalent depth 
to single-region sequencing) using a 
bootstrapping procedure (see Methods). 
Outcomes were then calculated on each 
random sample and averaged to produce 
region-number-specific estimates.

Pooled sequencing substantially 
decreased mutation dropout relative to 

single region profiling, even with the 
addition of just a single region (17% 
decrease in dropout with a pool of two 
regions). Similarly, we observed that 
this approach significantly improved 
our ability to correctly assign clonality 
to observed mutations, with a 24% drop 
in clonality assignment error with the 
addition of a single region to a pool 
(Figure 1E). When evaluating these 
same outcomes at the patient level (i.e. 
proportion of individuals with at least 
one variant dropped/misclassified), we 
observed that pooled sequencing with a 
single additional region would result in 
a 14% decrease in both the number of 
patients subject to mutation dropout and 
the number affected by misattribution 
of clonality (Supplementary figure 
3b, d). Consistent with the rarity of 
spatially-delimited low-allele-frequency 
mutations in ccRCC (arising in cancer 
genes), we observed a negligible number 
of false-negative mutation calls with a 
higher number of regions (Figure 2A). 
No differences were observed between 
tumor pools of four regions and those 
with higher numbers when evaluating 
their reliability when attributing 
mutation clonality, however, this result 
was found specific to the tumor type 
context (Supplementary figure 4a, b). 

Importantly, because the financial 
cost of next-generation sequencing 
(NGS) assays is dominated by 
sequencing costs (i.e. related to library 
size due to depth and breadth) rather 
than sample processing and genomic 
material extraction, obtaining DNA 
from multiple regions and mixing them 
into a single pseudo-bulk would result 
in minimal additions to the total cost 
(Supplementary Figure 5a). Given that 
our direct pooling approach requires no 
additional reagents (nor modifications 
to the computational infrastructure), 
it occupies a  flexible middle ground 

investigators10. Furthermore, pooling of 
tumor regions preserves precious tumor 
tissue which could be used for further 
molecular, immunohistochemical, 
or other profiling, and therefore is a 
material-efficient alternative to fully 
unbiased representative sequencing11. 
Direct pooling of DNA samples thus 
represents a flexible, cost-efficient 
middle-ground strategy that can be 
readily implemented into current 
pipelines without requiring additional 
expertise or reagents (Figure 1C). 

We examined the feasibility of 
pooled sequencing using a deep, targeted 
clinical sequencing platform. For each 
of six ccRCC tumors, six spatially 
discrete regions were selected and 
pooled into a single sample. In parallel, 
we sequenced separate aliquots of the 
same tumor regions to standard depth, 
generating a ground-truth set of variant 
calls (Figure 1D and Supplementary 
figure 1a). One case (RCC006) had no 
variants identified in any region and 
was not included in the mutational 
analysis (Supplementary table 1, 2). 
Multiregional pooled sequencing of six 
regions at an average depth of ~900x 
(150x/region) resulted in a mutation 
dropout rate of 4.3% (1/23 variants) 
and a clonality error rate of 4.5% (1/22 
variants) (Supplementary figure 2a). 
Compared to single region profiling, 
pooled multi-regional sequencing 
showed a 12% lower dropout rate (95% 
CI: 2.0 - 22.4%, Welch t-test, p=0.02) 
and a 13% lower clonality error rate (95% 
CI: 1.2 - 24.9%, Welch t-test, p=0.03) 
(Supplementary Figure 2b). Reduction 
in clonality misattribution was robust 
with the chosen cancer-cell fraction 
(CCF) threshold, with an estimated 
Matthew’s correlation coefficient 
(MCC) of 0.73 (with +1 indicating 
perfect prediction and -1 complete 
disagreement) (Supplementary figure 

Figure 1 | Intratumoral mutational heterogeneity in renal cell carcinoma can be overcome with pooled sequencing.  A.Variants identified in the 
TRACERx RCC cohort. The clonal status and proportion of clinically relevant variants are shown (left). Top 10 most commonly-mutated genes in the 
TRACERx RCC cohort, by clonal status and clinical relevance (right). The numbers at the top represent the number of unique variants identified per 
gene in the cohort. B. Schematic representing the confection of tumor DNA pools. During ‘Evolution inference’, evolutionary trees are depicted with 
(right) and without (left) spatial resolution. C. Schematic comparing resource requirements and accuracy across different sequencing approaches. MR: 
conventional multi-regional sequencing, SR: single-region sequencing. D. Variant cancer-cell fraction (CCF) identified in three separate tumor regions 
and its corresponding multiregional DNA pool. Results are shown in percentages relative to the total number of cancer cells in the sample. E. Dropout 
(left) and clonality misattribution estimates (right) from the in silico analysis performed on the TRACERx RCC cohort are shown for conventional and 
pooled sequencing (red and blue bars, respectively). Average event-level results are shown with their 95% confidence intervals (error bars) calculated 
across 100 simulation.



www.kidney-cancer-journal.com                                                                                                                                Kidney CanCer Journal | 19 (2) | June 2021                 21         

compared to bona fi de multiregional 
sequencing and full-scale mixing of 
left-over tumor tissue10,11. We defi ned 
a metric of cost-eff ectiveness as the 
change in mutation dropout (or clonality) 
per tumor relative to the change in 
cost (Supplementary fi gure 5 b, c). 

Using cost estimates for targeted panel 
sequencing from our own institution, 
we compared the cost-eff ectiveness of 
conventional and pooled multi-regional 
sequencing relative to single-region 
profi ling. Pooled sequencing (of 2 to 4 
tumor regions) was found to be ~10% 

more cost-eff ective than single-region 
profi ling both for mutation detection and 
clonality assessment, while the opposite 
was observed with conventional multi-
regional sequencing. Notably, the 
added benefi t of pooled sequencing was 
lost when pooling 10 regions or more 

Figure 2 | Translational value of pooled sequencing. A. MCC estimates used to evaluate the optimal number of regions to pool (top) and the optimal range 
of CCF thresholds to defi ne clonality (bottom). B. Cost-effectiveness analysis of the dropout and clonality error rates (at the tumor-level) between conventional and 
pooled multiregional assessment. Results are shown for increasing numbers of tumor regions relative to the cost-effectiveness of a single tumor region (ratio=1). C.
Proportion of patients subject to risk misattribution (left). The most-common features resulting in risk misattribution after pooling 4 regions were dropout of BAP1or 
TP53 variants, followed by dropout of PBRM1 variants (right). D. Proportion of patients with at least one targetable mutation identifi ed (left). The most commonly 
missed targetable alterations in pools of 4 regions were TSC1 loss-of-function and PIK3CA activating mutations (right). E. Proportion of patients in which the correct 
molecular subtype was determined based on mutational data (left). The most commonly missed subtypes in a 4-region tumor pool are shown in the pie chart (right). F. 
Underestimation of tumor mutational load. Bars represent the average TMB error across all simulations (i.e. true - sample / true) and error bars its 95%CI. TMB: tumor 
mutational burden, MCC: Matthew’s correlation coeffi cient, CCF: cancer-cell fraction.
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(Figure 2B).
We next examined the translational 

utility of pooling discrete regions of a 
tumor in the management of ccRCC 
by several metrics. In patients with 
metastatic ccRCC receiving first-
line treatment with tyrosine kinase 
inhibitors, the mutation status 
(irrespective of clonal status) of PBRM1, 
BAP1, and TP53 is of prognostic 
significance7, and dropout of somatic 
variants in these genes therefore affects 
risk stratification. We observed that risk 
stratification would be affected in 10% 
of the TRACERx RCC patients if only a 
single region were sequenced. Pooled 
sequencing of 4 regions corrected the 
risk stratification in 4% of patients, 
effectively reducing the baseline error 
in risk stratification by 22% (Figure 2C). 
Furthermore, the presence of mutations 
in a subset of genes represents potential 
therapeutically actionable targets 
and/or eligibility criteria for clinical 
trials. Pooled sequencing (of 4 regions) 
significantly increased the number of 
patients identified with such mutations 
by more than 70% (from 6% to 10%) 
(Figure 2D). 

Independent of its translational 
value, pooled sequencing provides a 
cost-effective lens onto patterns of ITH. 
Recent work by the TRACERx 
consortium in ccRCC has proposed 
“evolutionary subtypes” based on the 
presence and clonality of mutations in 
five genes (VHL, PBRM1, SETD2, BAP1, 
and PTEN). We examined our capacity 
to correctly assign evolutionary 
subtypes in pooled sequencing 
according to the heuristics outlined by 
Turajlic and colleagues6. Pooling four 
tumor regions increased the correct 
evolutionary subtype assignment by 
16%, with the majority of missed 
subtypes corresponding to the ‘PBRM1  

PI3K’ and ‘PBRM1 SETD2’ 
subtypes, with relatively good outcomes 
(Figure 2E). Pooled sequencing thus 
represents a potential strategy for the 
interrogation of subclonal mutational 
diversity and inference of evolutionary 
trajectories, which have further 
implications for patient outcomes.

Finally, we explored the 

translational value of pooled sequencing 
in the context of an entirely different 
disease and sequencing platform. In a 
cohort of 100 NSCLC patients from the 
TRACERx consortium, we evaluated in 
silico the utility of pooled sequencing in 
accurately quantifying tumor mutation 
burden (TMB); this measure is 
employed as a biomarker for response to 
immunotherapy in this disease. While 
single region sequencing underestimates 
total tumor mutation burden by nearly 
20%, the addition of a single region 
to a DNA pool reduced this effect by 
41% (Figure 2F). Since the clonality of 
neoantigens is an emerging determinant 
of T cell immunoreactivity13, and 
given that TMB and neoantigen load 
are highly correlated14, accurate 
assessment of mutation burden with 
multiregional approaches may improve 
prognostication in the context of 
immunotherapy for NSCLC. However, 
the ability of a clonality-aware TMB 
measure to predict response to 
immune-checkpoint blockade will need 
to be evaluated in this context, as it is 
currently optimized to the single region 
setting15.

Intratumoral heterogeneity is a 
fundamental hurdle in the genomically-
informed delivery of care to cancer 
patients. In ccRCC, such heterogeneity 
is so pervasive that it confounds the 
accurate identification of the small 
set of driver mutations of therapeutic 
relevance. Our proposed approach of 
direct pooled DNA sequencing from 
several tumor regions overcomes some 
of these issues at a fraction of the cost 
of bona fide multiregional profiling; 
and it does so without excess use of 
precious tissue material, preserving 
it for subsequent profiling studies. 
Pooling thus represents a viable and 
cost-effective strategy to overcome ITH 
during clinical sequencing. Importantly, 
the overhead costs for both single region 
and pooled sequencing, including sample 
acquisition, data handling, storage, and 
analysis, are largely the same, as the 
size of the sequencing library remains 
identical. Furthermore, multiregional 
DNA pooling allows for the inclusion 
of additional processing steps before 

sequencing, providing an extra degree of 
flexibility when adjusting this approach 
to different clinical scenarios. Finally, 
by mixing regions of variable purity, we 
also envision that pooled sequencing 
may ameliorate the ~3% of tumor 
samples (~300/10,000 per year total) 
which currently fail clinical sequencing 
at our institution due to excessively low 
tumor purity, thus increasing resource 
utilization efficiency16. 

Our current analysis is limited to 
single nucleotide variants and indels. 
However, copy number variants (CNVs) 
could be similarly evaluable by pooled 
sequencing. However, the relatively 
low density of heterozygous SNPs tiling 
the genome in targeted sequencing 
platforms renders the attribution 
of clonality to CNVs extremely 
challenging9. One might speculate 
that ongoing refinement of targeted 
sequencing panels or the use of broader 
panels could create new opportunities 
for copy-number analysis from pooled 
sequencing.

Although sequencing technologies 
have greatly expanded our knowledge 
of the molecular mechanisms behind 
the development and progression of 
RCC, these discoveries have yet to 
be translated into tangible clinical 
benefits during treatment selection 
or prediction of therapy response. 
However, it is unclear if this lack of 
clinical applicability is indeed inherent 
to the biology of the disease or a result 
of pervasive sampling biases in past 
genomic studies that have profiled a 
single tumor region. Therefore, it is 
imperative to expand on these initiatives 
and consider novel sequencing strategies 
that allow for multi-region assessment 
of heterogeneous tumors.

SUPPLEMENTAL INFORMATION
Any supplementary information 
including supplementary figures 
and supplementary tables, legends, 
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been provided in the supplementary materials as 
well as in a publicly available repository (https://
github.com/reznik-lab/DNApooling_RD). The 
raw sequencing data (MSK-IMPACT) produced 
in this study are deposited on the Sequence Read 
Archive (SRA) under the accession number PR-
JNA633220.  Data from the validation sets are 
available in the supplementary materials of the 
original TRACERx publications6,12, only the fil-
tered/annotated versions are provided with this 
manuscript. Any other relevant data is available 
from the corresponding authors upon reasonable 
request.
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